ELSEVIER

Contents lists available at SciVerse ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

Short communication

Determination of dissociation parameters of weak acids in different media according to the isohydric method

Tadeusz Michałowski ^{a,*}, Bogusław Pilarski ^b, Agustin G. Asuero ^c, Agnieszka Dobkowska ^b, Sławomir Wybraniec ^a

- ^a Faculty of Engineering and Chemical Technology, Cracow University of Technology, 31-155 Cracow, Poland
- ^b P.P.H.U. Cerko s.c., 80 299 Gdańsk, Afrodyty 9, Poland
- ^c Department of Analytical Chemistry, The University of Seville, 41012 Seville, Spain

ARTICLE INFO

Article history:
Received 15 June 2011
Received in revised form 29 August 2011
Accepted 1 September 2011
Available online 7 September 2011

Keywords: Acid-base equilibria Aqueous solutions Titration Dissociation constants

ABSTRACT

The isohydricity (pH constancy) principle is referred to the pair of solutions: weak acid (HL, C_0 mol/L) and strong acid (HB, C mol/L) when mixed e.g., according to titrimetric mode. Such a case takes place if the relation $C_0 = C + C^2 \times 10^{pK_1}$ is valid, where $pK_1 = -\log K_1$, K_1 – dissociation constant for a weak monoprotic acid HL. This principle, outlined and formulated in earlier paper (Michałowski et al., *Talanta* 82 (2010) 1965), is the basis for a sensitive method of pK_1 determination, confirmed for a series of weak acids in presence of basal electrolytes or in water + organic solvent (dimethyl sulphoxide, methanol, isopropanol) media. The results of titrations were elaborated according to principles of regression analysis, with use of least squares method. A new criterion for precision of the results obtained according to this method is formulated. The pK_1 values obtained are comparable with ones found in literature.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The term "isohydric" refers to a pair of solutions having the same pH value. The isohydricity concept gained its quantitative utterance in the formulae derived in the paper issued lately [1], where were also stated, that the isohydricity property is limited to the systems where only acid–base equilibria are involved. In other instances, protons are generated/consumed in side (redox, precipitation and/or complexation) reactions. The isohydricity principle can be categorized not only as an interesting curiosity of electrolytic systems, however.

The isohydricity has also some relevance to the buffering action and buffer capacity [2,3], and shows some analogies with pH-stat action and pH-static titration [4,5]. Moreover, it can also be considered as a valuable and sensitive tool for determination/validation/verification of acidity constants ($pK_1 = -\log K_1$) of weak monoprotic acids (HL), where

$$K_1 = \frac{[\mathsf{H}^+][\mathsf{L}^-]}{[\mathsf{HL}]} \tag{1}$$

In [1], the isohydricity concept was exemplified by the systems composed of different pairs of mono- or polyprotic acids or their salts. In particular, a weak acid HL (C_0 mol/L) and strong acid HB

 $(C \operatorname{mol}/L)$ form a pair of isohydric solutions, provided that the relation

$$C_0 = C + C^2 \times 10^{pK_1} \tag{2}$$

is valid. In this case, pH of the solution obtained after addition of VmL of Cmol/L HB (as titrant, T) into V_0 mL of C_0 mol/L HL (as titrand, D) remains constant, irrespectively of V value. Similarly, pH is constant after addition of VmL of C_0 mol/L HL into V_0 mL of C mol/L HB, if C_0 and C are interrelated as in Eq. (2). Moreover, for the pair (HL, HB) of the isohydric solutions, the ionic strength (I_0 , mol/L) of the mixture remains unchanged (I_0 = C) after mixing the composing solutions at different proportions, particularly when the mixing is carried out according to titrimetric mode, in quasistatic manner, under isothermal conditions; the last requirement is involved with possible changes in K_1 value, resulting from heat effects occurred during the titration. The true (not approximate) constancy inherent in the isohydric systems is a unique property, testifying on account of this method.

The isohydric method is based on preparation of a series of solutions of both acids: weak acid HL $(C_{0i}^* \text{mol/L})$ and strong acid HB (C mol/L), whose concentrations (C_{0i}^*, C) are interrelated in the equality (see Eq. (2))

$$C_{0i}^* = C + C^2 \times 10^{pK_{1i}^*} \quad (i = 1, ..., n)$$
 (3)

where pK_{1i}^* are the pre-assumed numbers, not far from real pK_1 value (Eq. (2)). The n pairs {(HL, HB)_i} of the solutions (i = 1, ..., n) are mixed according to a common pH-metric titration procedure,

^{*} Corresponding author. Tel.: +48 12 628 21 77. E-mail addresses: michalot@o2.pl, michalot@chemia.pk.edu.pl (T. Michałowski).

Nomenclature C concentrat

C concentration [mol/L] of HB
Co concentration [mol/L] of HL
D titrand (solution titrated)

HB strong acid HL weak acid

 K_1 dissociation constant for HL

LS least squares method

MOH strong base

 $pK_1 = -\log K_1$ acidity parameter pK_1^* pre-assumed pK_1 -value

S organic solvent

T titrant

V volume [mL] of T V_0 volume [mL] of D Z basal electrolyte

where V mL of C mol/L HB is added (as titrant T), in portions, into V_0 mL of C_{0i}^* mol/L HL (considered as titrand, D). It is advisable to choose the pre-assumed pK_{1i}^* values smaller and higher than the pK_1 value; in this case, the true pK_1 value can be found by interpolation that seems to be more advantageous than extrapolation.

One can also apply another viewpoint, based on simple checking the credibility of pK_1 values, known from literature data. Similarly, one can assume equal concentrations (C_1) of a basal electrolyte MB_r in both solutions mixed: $HB(C) + MB_r(C_1)$ and $HL(C_0) + MB_r(C_1)$; in this case, $I = C + C_1$ for r = 1 and $I = C + 3C_1$ for r = 2 (e.g., $MgCl_2$). The same procedure can also be applied to the systems with mixed solvents (binary-solvent systems [6]). Both approaches will be applied in the present paper.

As indicated in [6,7], it is advisable to apply to pK_1 the term "acidity parameter" for "acidity constant" when referring to the systems with mixed-solvent media, and binary-solvent media in particular, whose composition can be expressed by mole fraction, x, of the solvent with higher molar mass. Particularly, in binary-solvent media, W+S, composed of water (W = H_2O) and an organic (0) solvent S, we have $x = x_S$ for the mole fraction of S, and $pK_1 = pK_1(x)$. Denoting by $x_{Vo} = V_{(o)}/(V_{(o)} + V)$ the volume fraction of S in binary-solvent medium (W+S) and neglecting the contraction effect, one can calculate

$$x_{S} = \frac{x_{Vo}}{\chi_{WS} \cdot (1 - x_{Vo}) + x_{Vo}} \tag{4}$$

where [1]

$$\chi_{\text{WS}} = \left(\frac{\rho_{\text{W}}}{\rho_{\text{S}}}\right) \cdot \left(\frac{M_{\text{S}}}{M_{\text{W}}}\right) \tag{5}$$

and ρ_X , M_X – density [g/mL] and molar mass [g/mol] of X=W, S.

The pH titrations $(T \rightarrow D)$ in binary-solvent media were made in D+T systems: HL $({C_{0i}}^*, W+S)$ +HB (C, W+S), where the solvent composition, expressed by x_S value (Eq. (4)), was the same in both solutions mixed. The experiments were made at different x_S values.

2. Experimental

2.1. Apparatus and reagents

The pH titrations were carried out in 30 mL thermostated, self-made measuring cell, fitted with magnetic stirrer and PT 1000 temperature sensor. The temperature was kept at 25.0 ± 0.2 °C by means of the Huber thermostat system. The pH measurements and titrations were performed with Cerko Lab System microtitrator, equipped with syringe pump and pH electrode (Hydromet – ERH-13-6 type and Ionode, I]44C type). The electrode was standardized

with aqueous standard buffers (from Chempur Company). Other preparatory steps were the same as the ones presented in [1]. The experimental points $\{(V_j, \mathrm{pH}_j) \mid j=1,\ldots,N\}$, N=200, were registered in every single titration, made within V-range (0,4.0) mL; the titrant T was added stepwise, in aliquots of 0.02 mL, with 8 or 10-s pause, into $V_0=3.0$ mL of titrand D.

The reagents, of analytical purity grade, were purchased from commercial sources: benzoic acid from Chempur (pure p.a. >99.5%), chloroacetic acid from Fluka (pure p.a. >99%, m.p. 61–62 °C), p,L-mandelic acid from Merck (pure, >99%), salicylic acid from Sigma–Aldrich GmbH (extra pure, 99.5–100.5%). All chemicals were used without further purification. HCl solution was supplied by Chempur.

Background electrolytes were purchased from commercial suppliers and used as received: potassium chloride from POCH S.A. (pure p.a.), sodium chloride from Carl Roth GmbH (\geq 99.9%), magnesium chloride from Sigma–Aldrich Chemie GmbH (anhydrous, \geq 98%, m.p. 714 °C) and potassium nitrate from POCH S.A. (pure p.a.). Sodium carbonate (from Chempur Company) was calcined (220 °C) before standardization of HL and HCl.

Doubly distilled (freshly prepared) water (W), with conductivity not exceeding 0.18 μ S/cm, was used. Other solvents (S): methanol (CH₃OH, analytical grade, 99.5%), dimethylsulphoxide (CH₃)₂SO, HPLC grade, 99.5%) were supplied by POCH S.A. 2-Propanol ((CH₃)₂CHOH, pure p.a., min. 99.7%) were purchased from Chempur. The mixed solvents, W+S, were prepared by mixing W and S in appropriate proportion, x_{Vo} (% v/v) (Eq. (4)) and cooling in capped flask.

Stock solutions of HL, HCl and other substances were prepared by dissolution of appropriate amounts of the preparations in (a) W or (b) W+S. The HCl and HL stock solutions were standardized by pH titration against Na_2CO_3 . The D+T systems:

(a)
$$(HL({C_{0i}}^*) + MB_r(C_1))$$
, $(HB(C) + MB_r(C_1))$ and (b) $(HL(C_{0i}^*, W + S))$, $(HB(C, W + S))$

were obtained by dilution of the starting reagents in (a) W, or (b) W+S. At given C-value, C_{0i}^* were calculated from Eq. (3).

2.2. Procedures

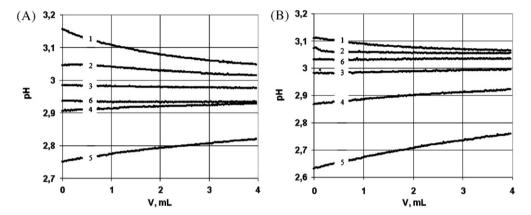
The procedure applied was similar to one described in [1]. The pH titrations: (a) (HB (C)+MB_r (C_1)) \rightarrow (HL (C_{0i}^*)+MB_r (C_1)), and (b) (HCl (C, W+S) \rightarrow HL (C_{0i}^* , W+S)) were made (i=1,..., 5) and the points {(V_{ij} , pH_{ij}) | j=1,..., N} (N=200) obtained in i-th titration were approximated by the lines

$$pH = a_i + b_i \cdot V \tag{6}$$

whose parameters: a_i , b_i were determined according to LS method [8,9]. The slopes b_i of the lines (6) are the basis for further considerations. Namely, the collected points (pK_{1i}^*, b_i) , $i = 1, \ldots, 5$, are approximated by the straight line

$$b = p + q \cdot pK_1^* \tag{7}$$

whose parameters p, q are determined according to LS method. Then the value


$$pK_1^* = pK_1 = -\frac{p}{q} \tag{8}$$

calculated at the slope b = 0, is considered as the evaluation of the true pK_1 value for HL.

In order to confirm this pK_1 value (Eq. (8)), sixth titration was made at $pK_1^* = pK_1$ in Eq. (3). Low (close to zero) value of the slope b, i.e. pH = const within an experimental error, ca. $pH \pm 0.01$, made at $pK_1^* = pK_1$ in pH titration, is the confirmation of the pK_1 value.

Table 1 The exemplary data referred to the isohydric method of pK_1 determination.

pK_{1i}^*	C_{0i}^*	a_i	b_i	pK_{1i}^*	C_{0i}^*	a_i	b_i
(A) Mandelic	acid (C _{0i} * mol/l)+HCl (C	= 0.000741 mol/L) + Nac	$Cl(C_1 = 0.1 \text{ mol/L})$	(B) Mandelic	acid (C _{0i} * mol/l) + HCl (C	= 0.000894 mol/L) + Mg	Cl ₂ (C1 = 0.05 mol/L)
3.20	0.00161	3.1409	-0.02651	3.0	0.00169	3.1013	-0.01097
3.45	0.00229	3.0490	-0.00933	3.2	0.00216	3.0393	-0.00077
3.60	0.00293	2.9758	-0.00079	3.4	0.00290	2.9814	0.00308
3.75	0.00383	2.9082	0.00523	3.6	0.00407	2.8711	0.01320
4.00	0.00624	2.7567	0.01692	4.0	0.00888	2.6400	0.03157
3.654	0.00322	2.9344	-0.00058	3.256	0.00234	3.0300	0.00101
b = -0.19575	$+0.05357 pK_1^*$; $pK_1 = 3.65$	54		b = -0.13371	$+0.04106 \text{ p}K_1^*$; $pK_1 = 3.25$	56	
(C)Salicylic a	$\operatorname{cid}(\operatorname{C_{0i}}^*\operatorname{mol/l}) + \operatorname{HCl}(\operatorname{C} = 0)$	0.001025 mol/L) in H ₂ O	+(CH ₃) ₂ CHOH(20%, v/v)	(D) Salicylic a	$\operatorname{cid}(C_{0i}^* \operatorname{mol/l}) + \operatorname{HCl}(C = 0)$	0.00110 mol/L) in H ₂ O +	(CH ₃) ₂ CHOH(50%, v/v)
2.8	0.00169	3.0830	-0.02269	3.6	0.00592	3.2954	-0.04081
3.0	0.00208	3.0304	-0.01513	3.84	0.00949	3.1540	-0.02008
3.2	0.00269	2.9684	-0.00049	4.0	0.0132	3.0752	-0.0109
3.4	0.00312	2.9026	0.00598	4.2	0.02028	2.9520	0.00764
3.6	0.00521	2.7798	0.01953	4.5	0.03936	2.8187	0.01759
3.248	0.00289	2.9570	-0.00111	4.168	0.01895	2.9720	0.00142
b = -0.17142	$+0.05277 \text{ p}K_1^*; \text{ p}K_1 = 3.24$	48		b = -0.27542	$+0.06607 pK_1^*; pK_1 = 4.16$	68	

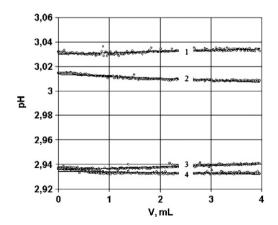
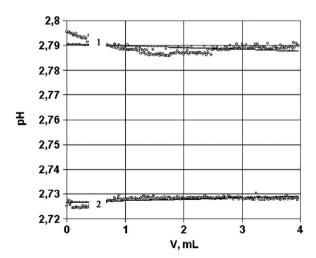


Fig. 1. The points $\{(V_j, pH_j) \mid j = 1, \ldots, 200\}$ plotted for HL = mandelic acid in presence of (A) $C_1 = 0.1 \text{ mol/L NaCl}$; (B) $C_1 = 0.05 \text{ mol/L MgCl}_2$ in D and T; C, pK_1^* and C_0^* values are indicated in Table 1, parts (A) and (B).

Such a procedure was applied for $T \rightarrow D$ titrations made in the D+T systems of (a) and (b) type, with different MB_r or S.


3. Results and discussion

The principle of the isohydric method [1] is presented in Fig. 1, where the titration curves were plotted at different sets (C, C_{0i}^*) of concentrations for HCl and HL = mandelic acid, respectively. The results (a_i, b_i) obtained from n = 5 titrations (Tables 1 and 2) with

Fig. 2. The points $\{(V_j, pH_j) \mid j=1,\ldots,200\}$ and approximating lines $pH=a_6+b_6\cdot V$ plotted at $V_0=3.000$ mL for HL = mandelic acid, in presence of basal electrolyte (Z) in D and T: (1) MgCl₂ ($C_1=0.05$); (2) KCl ($C_1=0.5$); (3) KNO₃ ($C_1=0.1$); NaCl ($C_1=0.1$); for further details, see Table 2.

use of Eq. (6) gave the set of points (pK_{1i}, b_i) approximated by the straight line (Eq. (7)) and "true" pK_1 value was evaluated on the basis of Eq. (8). For mandelic acid and other acids HL (specified in Tables 1 and 2) as well, the sixth (checking) titration was carried out, at C applied previously in the related series for HCl and C_{06} calculated from Eq. (3) at i=6 and $pK_1^*=pK_1$ obtained from Eq. (8). The plots of the relationships given by Eq. (7) indicated

Fig. 3. The points $\{(V_j, pH_j) \mid j=1,\ldots,200\}$ and approximating lines $pH=a_6+b_6\cdot V$ plotted HL=mandelic acid in binary-solvent system (H₂O, CH₃OH) in D and T at: (1) 20% (v/v) (x_S = 0.123); (2) 50% (v/v) (x_S = 0.359) CH₃OH. For further details, see Table 2.

Collected data for indicated acids in different media and compared with ones found in literature.

1 Acid, HL	$Z(C_1, mol/L)$	3 S (XVs)	4 C(mol/L)	5 C* (mol/L)	6 a ₆	7 b ₆	8 pK ₁ [this paper]	$\frac{9}{pK_1}[6]^a$	10 pk ₁ [literature data]
Mandelic	${ m MgCl}_2(0.05)$ KCl (0.5)	1 1	0.000894	0.00234 0.00289	3.0300 3.0135	0.0010 -0.0017	3.257 ± 0.002 3.465 ± 0.003	3.48	3.37 [10], 3.40 [12-14], 3.41 [15,19], 3.85 [20,23]
	KNO ₃ (0.1)	I	0.00106	0.00424	2.9356	0.0012	3.457 ± 0.002		
	NaCl (0.1)	ı	0.000741	0.00322	2.9344	-0.0006	3.654 ± 0.001		
	1	$CH_3OH (0.2)$	0.00142	0.01744	2.7905	-0.0007	3.905 ± 0.001	3.79	1
	ı	$CH_3OH (0.5)$	0.00134	0.05774	2.7266	0.00062	4.505 ± 0.001	4.48	5.53 [10]
Salicylic	KCI (0.1)	ı	0.000941	0.00175	3.0322	0.00007	2.9699 ± 0.0001	2.97-3.0	2.96 [10,11,25]
	KCI (1.0)	ı	0.00114	0.00235	2.8616	0.0018	2.971 ± 0.004		
	KNO_3 (0.1)	ı	0.00106	0.00212	2.9475	-0.0016	2.975 ± 0.003		
	ı	$(CH_3)_2$ CHOH (0.2)	0.001025	0.00289	2.9570	-0.0011	3.248 ± 0.002	ı	1
	ı	$(CH_3)_2$ CHOH (0.5)	0.00110	0.01895	2.9720	0.0014	4.168 ± 0.003	1	1
Glycolic	KCI (0.5)	1	0.00085	0.00563	2.9881	0.0014	3.825 ± 0.003	3.815	3.79 [10], 3.83 [20,22], 3.831 [18]
	KCI (1.0)	ı	0.00114	0.00961	2.8662	0.00016	3.812 ± 0.003		
Chloroacetic	KCI (0.1)	ı	0.00114	0.00208	2.8678	-0.0016	2.861 ± 0.003	2.87	2.82 [21], 2.85 [16,20], 2.86 [17], 2.87 [24], 2.91 [10]
Benzoic	ı	$(CH_3)_2 SO(0.2)$	0.00091	0.04270	3.0033	0.0010	4.693 ± 0.002	4.70	1

^a Unpublished Cerko data, obtained from our previous research; results cited from [10] were computed, not found there in explicit form.

nearly horizontal (parallel to V-axis) course (small b_6 values) for the acids tested - at all concentrations of the basal electrolytes (Z) applied (Fig. 2; Table 2), and for all binary systems considered (Fig. 3; Tables 1 and 2). All these facts testify very well on account of validity of the method proposed. The results obtained for pK_1 are in good accordance with ones found in the literature or in our earlier paper [1], and unpublished data obtained in Cerko laboratory (Table 2). The values in column 9 are related to aqueous solutions, and absence of basal salt (Z).

The slope b_6 of the line obtained in the n+1=6th titration, at $C_{06}^* = C + C^2 \cdot 10^{pK_1}$ provides a simple criterion for precision of the pK_1 value calculated from Eq. (8), on the basis of results obtained from n = 5 titrations. Referring to line pH = pH(V) = $a_6 + b_6 \cdot V$ (Eq. (6)), approximating the results of titrations covering the V-interval $\langle 0, \rangle$ 4) (see Fig. 1), one can write: $pH(0) = a_6 + b_6 \cdot 0$, $pH(4) = a_6 + b_6 \cdot 4$, $\delta pH = |pH(4) - pH(0)| = 4|b_6|$. The indeterminacy δpK_1 in pK_1 value can be assumed (arbitrarily) as $\delta pK_1 = \delta pH/2 = 2|b_6|$. For example, in Table 1 (section D) we have $b_6 = 0.00142$; then $\delta pK_1 = 0.00284 \approx 0.003$, and $pK_1 = 4.168 \pm 0.003$. The $2|b_6|$ values are small (see Tables 1 and 2), i.e. the precision δpK_1 thus calculated is good. However, the difference in the slope (and then in parallelism of the related curve) obtained from titrations made at C_{06}^* , calculated for p K_1 equal 4.168 and 4.171 or 4.165, is practically indistinguishable. Small δpK_1 value testifies in favor of high sensitivity of the method.

4. Final remarks

The isohydricity principle provides a new, sensitive method of pK_1 evaluation. This method, applied previously [1] to mixtures of pure $(C_1 = 0)$ solutions of strong (HB) and weak (HL) monoprotic acids, has been extended in this paper on the systems containing a basal electrolyte, present at equal concentration (C_1) in titrand (D) and titrant (T). The second extension is the application of this principle to binary-solvent systems. The results obtained in both kinds of systems confirmed a high sensitivity of this method.

This way, the effect of ionic strength (I) on pK_1 value was stated. The special validity of this method results from the unique property of true (not approximate) ionic strength constancy during the titration; $I = C + C_1$ for D + T systems with MB (e.g. NaCl, KCl, KNO₃), and $I = C + 3 \cdot C_1$ for D + T systems with MgCl₂ (C_1 mol/L).

The method proposed can also be applied for preliminary checking the pK_1 value, found in literature for an acid HL. A horizontal course of the line obtained from single pH titration, plotted for the pair of solutions (HB, HL) at concentrations (C, C_0) resulting from Eq. (2), testifies on account of validity of the pK_1 value for this acid. Otherwise, the non-parallel course of the line testifies against this opinion. The degree of parallelism is considered there within the tolerance limits pre-assumed for accuracy of pH-measurements; if pH varies within the limits pH \pm 0.01 in the whole V-range covered by titration curve, the opinion on parallelism is admitted. Such experiments can be done at any ionic strength, resulting from presence of a basal electrolyte. This procedure can also be applied in mixed-solvent media. In all instances, the C_1 and then ionic strength (I) values are limited by solubility of the basal electrolyte in the solvent considered.

Acknowledgement

Thanks are due to the Reviewer Professor Elisabeth Bosch for extensive/valuable comments on the manuscript.

References

- [1] T. Michałowski, B. Pilarski, A.G. Asuero, A. Dobkowska, Talanta 82 (2010) 1965.
- [2] A.G. Asuero, T. Michałowski, Crit. Rev. Anal. Chem. 41 (2011) 151.

- [3] A.G. Asuero, Crit. Rev. Anal. Chem. 37 (2007) 269.
- [4] T. Michalowski, M. Toporek, M. Rymanowski, Talanta 65 (2005) 1241.
- [5] T. Michalowski, M. Toporek, M. Rymanowski, J. Chem. Educ. 84 (2007) 142.
- [6] B. Pilarski, A. Dobkowska, H. Foks, T. Michałowski, Talanta 80 (2010) 1073.
- [7] T. Michałowski, B. Pilarski, A. Dobkowska, J. Młodzianowski, Wiad. Chem. 54 (2010) 124.
- [8] A. Sayago, M. Boccio, A.G. Asuero, Crit. Rev. Anal. Chem. 34 (2004) 39.
- [9] A.G. Asuero, A. Sayago, A.G. González, Crit. Rev. Anal. Chem. 36 (2006) 41.
- [10] F. Rived, I. Canals, E. Bosch, M. Rosés, ACA 439 (2001) 315.
- [11] S.C. Dutta, A.K. Bhattacharyya, S.C. Lahiri, J.Indian Chem. Soc. 78 (2001) 729.
- [12] R.P. Bell, P. de Paria, Trans. Faraday Soc. 66 (1970) 930.
- [13] J.P. Guthrie, Can. J. Chem. 57 (1979) 1177.
- [14] B.A. Ingelse, J.C. Reijenga, H.A. Claessens, F. Everaerts, M. Flieger, J. High Resolut. Chromatogr. 19 (1996) 225.

- [15] R. Yanping, M. Qinglan, Z.L.L. Yu, W. Liufang, Polyhedron 14 (1995) 2979.
- [16] B.A. Dawa, J.A. Gowlan, Can. J. Chem. 56 (1978) 2567.
- [17] J.M. Hornback, Organic Chemistry, 2nd ed., Thomson Brooks/Cole, Australia, 2006.
- [18] S. Yunhai, S. Houyong, L. Deming, L. Qinghua, Ch. Dexing, Z. Yongchuan, Sep. Purif. Technol. 49 (2006) 20.
- [19] J.J. Klingenberg, D.S. Knecht, A.E. Harrington, R.L. Meyer, J. Chem. Eng. Data 23 (1978) 327.
- [20] http://www.zirchrom.com/organic.htm.
- [21] http://www.inchem.org/documents/pims/chemical/pim352.htm.
- [22] http://en.wikipedia.org/wiki/Glycolic_acid.
- [23] http://en.wikipedia.org/wiki/Mandelic_acid.
- [24] http://en.wikipedia.org/wiki/Chloroacetic_acid.
- [25] http://en.wikipedia.org/wiki/Salicylic_acid.